Seems you have not registered as a member of artistsoutlook.com!. You may have to register before you can download all our books and magazines, click the button below to create a free account.

A discussion of fundamental mathematical principles from algebra to elementary calculus designed to promote constructive mathematical reasoning.

Mathematics is a subject we are all exposed to in our daily lives, but one that many of us fear. Timothy Gowers’s entertaining overview of the topic explains the differences between what we learn at school and advanced mathematics, and helps the math phobic emerge with a clearer understanding of such paradoxical-sounding concepts as “infinity,” “curved space,” and “imaginary numbers.” From basic ideas to philosophical queries to common sociological questions about the mathematical community, this book unravels the mysteries of space and numbers.

Most philosophers of mathematics treat it as isolated, timeless, ahistorical, inhuman. Reuben Hersh argues the contrary, that mathematics must be understood as a human activity, a social phenomenon, part of human culture, historically evolved, and intelligible only in a social context. Hersh pulls the screen back to reveal mathematics as seen by professionals, debunking many mathematical myths, and demonstrating how the "humanist" idea of the nature of mathematics more closely resembles how mathematicians actually work. At the heart of his book is a fascinating historical account of the mainstream of philosophy--ranging from Pythagoras, Descartes, and Spinoza, to Bertrand Russell, David Hilbert, and Rudolph Carnap--followed by the mavericks who saw mathematics as a human artifact, including Aristotle, Locke, Hume, Mill, and Lakatos. What is Mathematics, Really? reflects an insider's view of mathematical life, and will be hotly debated by anyone with an interest in mathematics or the philosophy of science.

Originally published in 1893, this book was significantly revised and extended by the author (second edition, 1919) to cover the history of mathematics from antiquity to the end of World War I. Since then, three more editions were published, and the current volume is a reproduction of the fifth edition (1991). The book covers the history of ancient mathematics (Babylonian, Egyptian, Roman, Chinese, Japanese, Mayan, Hindu, and Arabic, with a major emphasis on ancient Greek mathematics). The chapters that follow explore European mathematics in the Middle Ages and the mathematics of the sixteenth, seventeenth, and eighteenth centuries (Vieta, Decartes, Newton, Euler, and Lagrange). The last and...

Written for liberal arts students and based on the belief that learning to solve problems is the principal reason for studying mathematics, Karl Smith introduces students to Polya’s problem-solving techniques and shows them how to use these techniques to solve unfamiliar problems that they encounter in their own lives. Through the emphasis on problem solving and estimation, along with numerous in-text study aids, students are assisted in understanding the concepts and mastering the techniques. In addition to the problem-solving emphasis, THE NATURE OF MATHEMATICS is renowned for its clear writing, coverage of historical topics, selection of topics, level, and excellent applications problem...

Though it incorporates much new material, this new edition preserves the general character of the book in providing a collection of solutions of the equations of diffusion and describing how these solutions may be obtained.

From one of the greatest minds in contemporary mathematics, Professor E.T. Bell, comes a witty, accessible, and fascinating look at the beautiful craft and enthralling history of mathematics. Men of Mathematics provides a rich account of major mathematical milestones, from the geometry of the Greeks through Newton’s calculus, and on to the laws of probability, symbolic logic, and the fourth dimension. Bell breaks down this majestic history of ideas into a series of engrossing biographies of the great mathematicians who made progress possible—and who also led intriguing, complicated, and often surprisingly entertaining lives. Never pedantic or dense, Bell writes with clarity and simplicity to distill great mathematical concepts into their most understandable forms for the curious everyday reader. Anyone with an interest in math may learn from these rich lessons, an advanced degree or extensive research is never necessary.

Third edition of popular undergraduate-level text offers historic overview, readable treatment of mathematics before Euclid, Euclid's Elements, non-Euclidean geometry, algebraic structure, formal axiomatics, sets, more. Problems, some with solutions. Bibliography.